

Laboratory for Industrial Energy Systems LENI -ISE-STI-EPFL

Applications de l'analyse exergétique pour la conception des systèmes de conversion d'énergie intégrés

François Marechal Laboratoire d'énergétique industrielle Institut de Génie mécanique Sciences et techniques de l'ingénieur Ecole Polytechnique fédérale de Lausanne

mailto:francois.marechal@epfl.ch

Process system integration

©F.Marechal LENI-ISE-STI-EPFL 2004

Exergy and process intergation

Process unit analysis
Analyse the requirements
Energy conversion integration
Polygeneration and utility integration
Evaluate the results

Process description : list of process units

The heat transfer requirement interface

Process unit operation

Heat-Temperature *Heat at the lowest temp.*

Heat-Temperature **Cool at the highest temp.**

Unit operation analysis

Analyse unit operation

Mixing tank

Analyse unit operation

<u>e</u>vĩ

Process integration

Hot & cold composite curves

Minimum energy requirement

©F.Marechal LENI-ISE-STI-EPFL 2004

8

Carnot composite curves of a process

Hot composite curves

Carnot composite curves

Carnot composite curves of the process

Cold composite curves

Carnot composite curves

Table 3Exergy of the hot and cold process composite curves

	Energy	Exergy	Exergy	Name
		Total	$\Delta T_{min} corrected$	
Hot streams [kW]	20291.0	5521.4	5352.4	$\dot{E}q_{hot_a}$
below T_0 [kW]	1709.0	131.5	151.2	$\dot{E}q_{hot_r}$
Cold streams[kW]	20197.0	4599.3	4650.1	$\dot{E}q_{cold_a}$
below T_0 [kW]	0.0	0.0	0.0	$\dot{E}q_{cold_r}$
ΔT_{min} losses [kW]	_		381.2	

©F.Marechal LENI-ISE-STI-EPFL 2004

Carnot composite curves

Hot and cold composite

PACE Energy conversion integration

□ Grand composite curve

600 ^I Hot utility 550 **Ø**Refrigeration Hot Utility: 6854 kW Self sufficient 500 "Pocket [□] CHP 450 Cycles T(K) 400 350 Ambient temperature 300 Cold utility:6948 kW Refrigeration: 1709 kW 250 2000 4000 6000 8000 10000 12000 0 Q(kW)

Carnot Grand composite curve

LENI -ISE-STI-EPFL

©F.Marechal LENI-ISE-STI-EPFL 2004

15

Table 2Minimum energy and exergy requirements of the process

	Energy	Exergy	Name
Heating [kW]	+6854	+567	\dot{E}_{heat}
Cooling $[kW]$	-7145	- 1269	\dot{E}_{cool}
Refrigeration [kW]	+1709	+ 157	\dot{E}_{frg}
Balance [kW]		-550	

Exergy requirement above the pinch

Exergy by combustion

Minimum Energy Requirement above the pinch point

Laboratory for Industrial Energy Systems

Exergy composite Heat exchange losses

Laboratory for Industrial Energy Systems

Exergy composite -self-sufficient pockets

Laboratory for Industrial Energy Systems

©F.Marechal LENI-ISE-STI-EPFL 2004

CHP : define the steam network

21

PA Integration of the energy conversion system

Integration of the energy conversion system

Integration of the energy conversion system

fl¥l **MILP formulation**

$$\begin{array}{c} \displaystyle \min_{R_r,y_w,f_w,E^+,E^-} (\sum_{w=1}^{n_w} C_2 w f_w + C_{el+} E^+ - C_{el-} E^-) * t \\ \text{Fixed maintenance} \\ \hline \\ \text{Fixed maintenance} \\ \hline \\ \text{Fixed maintenance} \\ \hline \\ \\ \hline \\ \text{Subject to : Heat cascade constraints} \\ \hline \\ \\ \sum_{w=1}^{n_w} f_w q_{w,r} + \sum_{s=1}^{n_s} Q_{s,r} + R_{r+1} - R_r = 0 \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \\$$

Laboratory for Industrial Energy Systems LENI -ISE-STI-EPFL

23

Consider exergy losses

New objective function

$$\underset{\dot{R}_{r}, y_{w}, f_{w}}{Min} \sum_{w=1}^{n_{w}} \dot{L}_{w} = \sum_{w=1}^{n_{w}} \left(f_{w} * (\dot{E}_{w}^{+} - \sum_{r=1}^{n_{r}} (\dot{E}q_{w,r}^{-})_{\Delta T_{min}} - \dot{E}_{w}^{-}) \right)$$

$$\begin{array}{ll} & \blacksquare \mbox{Thermal exergy :} & (\dot{E}q_{w,r}^{-})_{\Delta T_{min}} = \sum_{s=1}^{ns_w} \dot{Q}_{s,r}^{-} * (1 - \frac{T_0 * ln(\frac{T_{r+1}}{T_r})}{T_{r+1} - T_r}) \\ & \blacksquare \mbox{Chemical Exergy :} & \dot{E}_w^+ = \sum_{f=1}^{nfuel,w} \dot{M}_{f,w} \Delta k_f^0 \\ & \blacksquare \mbox{Work :} & \dot{E}_w^- \end{array}$$

Application

Phigh

(bar)

7.5

10

7.5

354

361

361

Thigh

(K)

371

384

371

COP kWe

130

323

34

15

12

28

Refrigeration

Refri		R717	Amn	Ammonia		
Refe	owrate	0.1	kmol	/s		
Mechanical power			394	kW		
	Р	T _{in}	Tout	Q	$\Delta T min/2$	
	(bar)	(°K)	(°K)	kW	(°K)	
Hot str.	12	340	304	2274	2	
Cold str.	3	264	264	1880	2	

Laboratory for Industrial Energy Systems LENI -ISE-STI-EPFL

25

Opt	Fuel	GT	CHP	Cooling	HP	-
	kW_{LHV}	kWe	kWe	kW	kWe	
1	7071	_	-	8979	-	Comb. + frg
2	10086		2957	9006	-	Comb. + stm + frg
3	16961	5427	2262	9160	-	GT + stm + frg
4	-	-	-	2800	485	hpmp + frg
5	666	-	738	2713	496	hpmp + stm + frg

Opt	Fuel	GT	CHP	Cooling	HP	
	kW_{LHV}	kWe	kWe	kW	kWe	
1	7071	-	-	8979	-	Comb. + frg
2	10086		2957	9006	-	Comb. + stm + frg
3	16961	5427	2262	9160	-	GT + stm + frg
4	-	-	-	2800	485	hpmp + frg
5	666	-	738	2713	496	hpmp + stm + frg
Share	between	heat p	Jmps	HP1 : 34 kW HP2 : 323 kW HP3 : 129 kW	/e /e /e	

Balanced composite curves (option 5)

Laboratory for Industrial Energy Systems LENI -ISE-STI-EPFL

27

Integrated composite curves

Integrated composite curve : steam network

Visualising the results : Carnot efficiency

Tricks for creative engineers : reduce the green area !

Option 5 : Carnot composite curves

Carnot integrated composite curves

Comparing results

Energy efficiency ☑NGCC equivalence of electricity $Total1 = \dot{m}_{fuel} * LHV_{fuel} + \frac{(E^+ - E^-)}{\eta_{el}} (= 55\% (NGCC))$ $\blacksquare EU \text{ mix for electricity}$ $Total2 = \dot{m}_{fuel} * LHV_{fuel} + \frac{(E^+ - E^-)}{\eta_{el}} (= 38\% (EUmix))$ Exergy efficiency $\eta_{ex} = \frac{\dot{E}q_{cold_a} + \dot{E}q_{hot_r} + \dot{E}_{grid}}{\dot{E}^+ + \dot{E}q_{cold_r} + \dot{E}q_{hot_a}} \quad \text{with} \quad \dot{E}^+ = \sum_{fuel=1}^{n_{fuels}} \dot{M}_{fuel}^+ \Delta k_{fuel}^0 + \dot{E}_{grid}^+$

$$\dot{L} = (1 - \eta_{ex})(\dot{E}^+ + \dot{E}q_{cold_r} + \dot{E}q_{hot_a})$$

Laboratory for Industrial Energy Systems

$$Total1 = \dot{m}_{fuel} * LHV_{fuel} + \frac{(E^+ - E^-)}{\eta_{el}} (= 55\% (NGCC))$$
$$Total2 = \dot{m}_{fuel} * LHV_{fuel} + \frac{(E^+ - E^-)}{\eta_{el}} (= 38\% (EUmix))$$
Table 9

Energy consumption and exergy efficiency of the different options

Option	Fuel	\dot{E}^+_{grid}	Total 1	Total 2	η_{ex}	Losses
	$[kW_{LHV}]$	[kWe]	$[kW_{LHV}]$	$[kW_{LHV}]$	%	[kW]
Comb. + frg	7071.0	371.0	7745.5	8029.7	34.9	8868.0
Comb. + stm +	frg 10086.0	-2481.0	5575.1	3675.1	44.5	8830.0
GT + stm + fr	9 16961.0	-7195.0	3879.2	-1630.7	51.3	11197.2
hpmp + frg	0.0	832.0	1512.7	2149.9	72.4	2408.1
hpmp + stm + f	rg 666.0	125.0	893.3	989.0	72.6	1831.6

Shares of Exergy losses

Laboratory for Industrial Energy Systems LENI -ISE-STI-EPFL

34

Sensitivity of the grid electricity mix

Power plant design

Power plant : steam cycle integration

Integrated composite curves

Energy conversion

[1] F. Marechal and B. Kalitventzeff. Targeting the minimum cost of energy requirements : a new graphical technique for evaluating the integration of utility systems. *Computers chem. Engng*, 20(Suppl.):S225–S230, 1996.

37

ENI

Mai 200

Systems

• Carnot composite curves Exergy conversion

Conventional cycles

Nuclear power plant

Conclusions

Energy conversion system integration Satisfy the process requirement with minimum ressources ✓ Valorise the available process exergy Combined exergy - Process integration ☑Analyse the requirements ✓Unit operation analysis : the heat transfer interface I heat at the coldest Temp Generate optimal integrated systems ✓ MILP method with Exergy objective Evaluate & compare solutions Graphical representations : Carnot composite & area

